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SUMMARY 

A consistent, accurate and reasonably simple method of obtaining derived quantities when the conventional 
Galerkin finite element method (GFEM) is used to obtain the primary quantities is defined and demonstrated, 
both theoretically and numerically. 

K E Y  WORIIS Consistent Flux Heat Flux Derived Quantities FEM 

INTRODUCTION 

Oftentimes the focal point of the analysis of a physical system is a derived quantity such as a 
flux, or force. In the corresponding numerical simulation the generation of such quantities directly 
from the solution can be plagued with accuracy and continuity problems; for example in deriving 
nodal fluxes related to a typical gradient transport phenomenon, a Co finite element representation 
of the solution leads to discontinuous nodal fluxes. The latter plus the superconvergence 
phenomena achieved in some problems on regular meshes has led to the common practice of 
using ‘Gauss-point’ fluxes. However, various authors, for example Wheeler,’ Larock and 
Herrmann,’ Marshall et ~ l . , ~  Gresho et ~ l . , ~  T h ~ r n t o n , ~  Kjaran and Sigurdsson6 and 
have suggested and employed an alternative technique, herein referred to as the consistent (flux) 
method, which can lead to more accurate results (see also References 10-12). The application 
of such a technique to advection-diffusion as well as fluid flow problems is described in detail 
and is illustrated by selected examples. 

THEORY 

Steady-state heat conduction 

Poisson equution with Dirichlet boundary conditions. To  set the stage, we begin with the simplest 
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of problems: find T ( x )  in R such that 

V 2 T + S ( x ) = 0  in R, 
T = T o  on T, 

where the source term, S(x) ,  and To are given and r is the boundary of R. Since we are interested 
in an FEM approximation to the solution of ( l ) ,  we begin by restating the problem in the weak 
form. Let H ,  be the space of functions with L,  derivatives in R and let H.y+" be a finite 
dimensional ( N  + M )  subspace of H,;  H i  c H :  c H ;  . . .  c H I ,  such that, as M ,  N + m, 
H Y + " + H , .  The definitions of N and M are necessarily vague at this point; they will be made 
precise in due course. Let ( Q i i  be a set of functions which spans (i.e. a basis). Also, 
let HY be a subspace of H I  in which the functions vanish on T and let HY.N be the analogous 
finite-dimensional ( N )  subspace of H Y .  Finally, let {4i} be a set of functions which spans 
HY.N. Assuming that { m i )  and { 4 i )  are constructed so that c (ai} ,  we let 
( T i )  = {ai) - {4i}. The functions, {r i } ,  of which only M are non-zero, are members 
of H Y + M  and will play a key role in the analysis. 

The finite-dimensional weak form of ( I )  may now be expressed as 

where T = T, + T, is the approximate solution, T,,EH?-" is the 'interior' solution, and Ts(x)  
is an H ,  extension of To(T) into !2 such that T,(T) is 'close to' To on r (in practice, T,(T) 
will interpolate To(T) via the piecewise polynomial basis functions of FEM; hence T,(T) will 
be identical to To(T) at a finite number ( M )  of points). Since T, is presumed known, (2) can be 
rewritten as 

P P 

But since id} form a basis in HY,N,  4 = Cj"=, u j 4 j  for some { u j }  and we therefore have, 
since 4 is an arbitrary function in HY.N, 

P P P 

J v~ , -vT ,  = JR 4is - J v + ~ - v T ~ ;  i = 1,2,. . . , N .  
R R 

In accordance with the Galerkin method, we expand T,, in the {4i) basis as 

(4) 

and, for 'convenience', we express T, as 
M 

T ~ =  c Tgrj (x ) ,  (6 )  
j =  1 

where [ T j )  are to be determined and {T;] are presumed known (e.g. via interpolation). 
Inserting (5) and (6) into (4) leads to the Galerkin equations, 

for the amplitude coefficients, { T j ) .  In the Galerkin FEM, {a i )  and {4i} are of 
course taken to be the piecewise polynomials associated with a discretized mesh of finite elements 
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which approximate R, and for our purposes they are assumed to be taken such that there are 
N nodes in R and M nodes on r. In this case it is common and convenient to let (6)  represent 
a basis function interpolant of To on r and an H ,  extension of To into R in such a way that 
T, goes to zero as ‘quickly as possible’ away from r. 

This in fact is the conventional GFEM, and (7) leads to the usual matrix problem, KT=f,  
the solution of which gives the global N-vector of the {Ti), an approximation to the actual 
temperature in R. 

We now address the problem of obtaining a consistent approximation to the ‘derived variable’, - 
cf = - n-VTI,, (8) 

the outward-directed normal heat flux on r (n is the outward unit normal vector on r), hereafter 
referred to simply as the heat flux. To this end, we construct another weak form of ( I ) ,  in which 
the {ri)  are employed as the test functions, i.e. we begin by assuming sufficient smoothness 
and write 

r iv2T+ ris=o; i =  1,2 ,..., M ,  L 1. 
which, upon integration by parts and using (8), yields the appropriate weak form, 

(9) 

where T=CY=, T j $ j ( x ) + x y = l  T j r j ( x )  is known (via solving (7)) and we now need only 
C” smoothness for T. 

Remark. As N and M -+ a3 for a fixed domain size (Q), i.e. as the element size +O, the source 
term domain integral in ( l O ) + O  whereas the other two terms converge to recover (8). For finite 
N and M ,  however, equation (10) represents the consistently derived heat flux, in that (i) it is the 
only heat flux which, if imposed as a Neumann boundary condition, will lead to the same 
iT j )  as from the original Dirichlet problem (7), and (ii) it guarantees the appropriate 
approximation to the global heat balance implied by (I), namely 

L q =  bs. 
This is true simply as a consequence of the fact that 

N M 
j =  1 1 4 j ( ~ ) +  j =  2 1 rj(x)= 1.0 

both in R and on (wherein every member of the first sum is zero). I t  is important to note 
that Cj”= dj(x) # 1 near r. Thus, the simple addition of all N equations of (4) and all M equations 
of (10) yields, using (12), the heat balance given by ( 1  1)-with, of course, the exact heat flux, q, 
replaced by the approximate heat flux, ij. This is easier to see if (4) is first rewritten as 

v ~ ~ - v T ;  i =  1,2 ,..., N ,  

and all equations in (10) and (1  3) summed, i.e. (1 1) is implied by (4) and (1 0). 
By contrast, the more common approximations to q, such as 

(13) 
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cannot be demonstrated to satisfy (1 I ) ,  and they generally will not. In fact, the use of (14) generally 
requires special procedures, since the derivatives of the basis functions usually do  not display 
interelement continuity; typically either boundary Gauss points on are employed (the 
recommended technique) or, if nodal values are desired, some sort of averaging procedure is 
usually required. The consistent flux method obviates these special procedures and accounts for 
the fact that we are dealing with a weak solution on afinite mesh. Another advantage of the 
consistent flux method is that the requirement for actually constructing n (which is generally 
tedious and often quite ambiguous, such as at sharp corners on r) is also completely eliminated; 
the method generates a best estimate to the normal flux at nodes even if the boundary is not 
smooth. 

Thus far the flux calculation has been somewhat ‘theoretical’. In order to actually compute 
the heat flux from (lo), we expand q into the set {r,} evaluated on r (in which case the 
[ r, form a birsis for the M-dimensional subspace of H ,  on r) as 

which, when inserted into ( I  0) yields 

5 rirj= jRris- j v r i . v T ;  i =  1,2 ,..., M .  
j = 1  r R 

The contributions to (16) can be formed in the usual way (at element level) except that only 
thosc elements with nodes on r need be considered, owing to the compact support of ( r i ) .  
This linear system can also be written as 

Bq = b, (17) 

where Bi j  is the boundary ‘mass’ matrix which couples qi to its nearest neighbours of r. The 
solution of ( 1  7) gives the nodal values of the flux, q j ,  , j  = 1,2,. . . , M, wherein it is noteworthy 
that the consistent boundary flux depends on more than just the normal gradient of T at the 
boundary. Shortly we will discuss how this apparently costly procedure can often be greatly 
simplified, but first we generalize the consistent flux method to a problem with mixed boundary 
conditions. 

Poisson equation with mixed boundary conditions (Dirichlet and Neumann). Consider now the 
slight generalization of ( I )  given by: find T(x) in R and on dR, such that 

and 

V 2 T + S ( x ) = 0  in R, 
T=T,  on ?Rl 

n . V T =  - q ,  on SR,, 

where S,  To and yz  (the outward normal flux on 80,) are given and r = dRl 0 dR2 is the 
boundary of R. In this case, we take H ,  as before, but HY is now the subspace of H ,  in which 
the functions vanish only on dR 1. Defining again the appropriate finite-dimensional (piecewise 
polynomial) subspace leads to the following weak form: 
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where 
N M ..- - 

T = TR,:*, + T, = T j 6 J x )  + 2. TjTj(x),  
j =  1 j =  1 

where the N nodes now include those in R and those on do,; the M boundary nodes are on 
an,. Inserting (20) into (19) yields the conventional GFEM equations to be solved for { T j } ;  
this is ‘part 1’ of the calculation. (Note that, as usual, (18c) has been incorporated into the 
approximate solution as a natural boundary condition.) Part 2 involves the computation of the 
consistent heat flux on d Q , ,  given that T is available. In a similar way as before, the appropriate 
weak form for = - n-VTl,.,, is L, riql = IQ ris - jQvri .vT - riq2; i = 1,2,. . . , M ,  (21) 

which, in conjunction with 

leads to a system of M equations for {ql j ) ,  the nodal values ofq, on dR, (i.e. insert (22) into (21)). It 
is noteworthy that in (21), the contribution of jan, riq2 is zero except at  those nodes which ‘join’ dR, 
to 8R2 (ri is zero over most of an2). 

In this case, the appropriate global balance associated with (18) is realized by adding all of 
the equations in (19) and (21) to give, using (12) which is now valid in R, on d Q ,  and on dR,, 

Note that, whereas ql  must be expanded into the basis set {Til;n, ), q2 need not be so expanded (via 
interpolation) into the analogous functions {TiIpQ,) (e.g. if q ,  is given in functional form, it  may be 
retained in this form, presumably leading to more accuracy, in (19) and (21)). 

The additional important point associated with this mixed boundary condition problem is 
the close relationship between the consistent flux calculation of ‘part 2’ and the treatment of 
the natural boundary condition of ‘part 1’. In fact, (21) is the appropriate equation for T if the 
flux were specified on all of F; here of course Ti must be replaced by 4 i ,  q ,  by 41, and the 
appropriate redefinitions of the subspaces used. These observations lend even more credibility 
to the claim that this is the consistent flux method. 

These interpretations also lead to an alternative manner in which to view the combined problem 
(temperature and boundary heat flux) since (on the boundary) eirher the primary variable 
(temperature) is unknown (on FR,) or the secondary variable (normal heat flux) is unknown 
(on c‘R,), i.e. consider the following ‘generalization’ of the previous problem: find T ( x )  in R 
and on dR, and find q1 on 130, such that (18) is satisfied. The appropriate weak form is now 
generated using the larger space of test functions, [ @ i ) ~ H y + M  and is obtained from (18a) 
via integration by parts and, using (18c) and q1 = -n*VTl in , ,  as 

Jc2 VOi.VT + J?*, @ i q 1 =  jQ - J?Q, ai 4 2  ; i = 1 , ~ .  . . , N + M ,  (24) 

where T is given by (20), Lj1 by (22) and the identification of the N + M nodes (and associated 
basis functions) is the same as given previously. Equation (24) appears to place the combined 
problem (for and ql) into a single function space setting. The automatic satisfaction of the 
global heat balance, (23), now follows immediately since Cr2,” Q i ( x )  = 1.0 in Q, on dR,, and 
on dR,. There is now one unknown (Tj or q I j )  for each node in the system and, correspondingly, 
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one equation associated with each node. I t  turns out, however, upon closer inspection of the 
individual equations of (24), that indeed the nodal equations for the primary variables are 
(necessarily) independent of and uncoupled from those for the derived variables (the converse 
of course is not true). Hence, a two-part solution procedure ‘falls out’ automatically: (i) solve 
the first N equations ( i  = 1,2,. . . , N )  for the primary variables, i.e. (19), and (ii) using these results, 
solve the remaining M equations for the derived variables, i.e. (21). 

Finally, we present (noting that there is no restriction to a Poisson problem) an algorithmic 
way in which to view, and perhaps implement, the consistent ‘flux’ method: 

(i) Initially, form all of the boundary nodal equations as if there were to be imposed the most 
general type of natural boundary condition at each node (for the Laplace operator 
considered thus far, it could be n*VT + h(T - To) + q = 0, for example). 

(ii) Modify the boundary node equations for the particular problem at hand, e.g. for Dirichlet 
data, the nodal equation can be omitted entirely (after transposing the appropriate coupling 
information to the right-hand side), although it should also be ‘saved’ (e.g. on a disk file) 
for later use in step (iv). For simpler natural boundary conditions, the proper deletions 
are made (e.g. h, To or q in the current problem). 

(iii) Assemble and solve the conventional GFEM equations for the primary variables. 
(iv) Recall the nodal equation for which Dirichlet data are employed, simplify the general 

boundary condition to that relating the primary and derived variables (q  = - n-VT 
for the current problem) in each equation, and solve for the consistently derived variables. 

The last step is, of course, generally optional; it is required only if the derived variables are. 
Also, i t  may sometimes be more convenient to perform this step by looping through the 
appropriate boundary elements and reconstructing the boundary nodal equations (rather than 
saving and later retrieving the original Dirichlet boundary node equations). 

Consistent mass us. lumped mass solution 

As mentioned previously, the consistent flux method leads to the requirement of solving a 
linear system, represented in general by ( 1  7) for the derived quantities when the consistent 
(boundary) mass matrix is employed. It is possible, however, to avoid the use of the consistent 
mass matrix while still retaining the major benefits of the consistent flux method; consistent flux 
does not necessarily require consistent mass. First, however, we note that even if the consistent 
mass matrix is employed, the cost of the calculation is generally small compared to the cost of 
solving for the original (primary) variables because the dimensionality of the problem is lower 
(a two-dimensional problem for gives only a one-dimensional problem for ql, etc.); 
concomitantly, M is significantly smaller than N in a practical calculation. The most expensive 
calculation of the derived variable is that from a Dirichlet problem; not only are there more 
‘boundary nodes’ to consider, but the usually sparsely banded matrix structure of M is then 
(effectively) full, owing to the ‘closed loop’ of boundary elements. In this case, a skyline (or profile) 
solution method’ would be particularly beneficial if Gaussian elimination is used. 

The alternative to solving the linear system is (obviously) to invoke ‘mass lumping’, in which 
case the mass matrix [see (16)], 

is rendered diagonal via, for instance, the row sum technique (where applicable), 
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B . .  IJ = 6.. 11 jr T i ,  (26) 

where 6 ,  is the Kronecker delta (mass lumping is normally done at element level14). If (26) is 
employed, the nodal fluxes in (1  6) (for example) are uncoupled and are simply 

q l i  = (la ris - jQ vri-vT) jr T i ,  i = 1,2,. . . , M .  

Although such a procedure is somewhat ad hoc, and (perhaps) generally less accurate than 
that using consistent mass, it can significantly simplify the calculation of the consistently derived 
quantities. By comparing consistent and lumped mass, Thornton’ has verified that the lumped 
mass approach is generally a viable alternative in that it is simpler, sometimes more accurate, 
and generally more cost effective; also, and importantly, the correct global balances are still 
obtained. Although the consistent mass approach should probably be employed if one desires 
the most accurate fluxes (and/or the appropriate ‘wiggle signals’ u la Gresho and Lee”) available 
from the approximation, the lumped mass results are nearly as simple to compute (and are often 
significantly more accurate) as those from the common methods based on ‘basis function 
derivatives evaluated on r‘ and this alone is probably sufficient reason to advocate it. 

Finally we point out that if mass lumping is used to compute 4, it would also be required if 
the Dirichlet problem were to be resolved as a Neumann problem to verify that the same solution 
( T )  is obtained. 

Time-dependent advection diffusion 

We now consider an important prototypical equation for problems involving incompressible 
fluid flow. The advection-diffusion equation is a useful stepping stone to the more complicated 
Navier-Stokes (and Boussinesq) equations which we ultimately consider; it involves fluid motion 
which, although presumed to be given, introduces sufficient additional complexities to merit 
separate consideration. 

The problem under consideration is the following: find T ( x ,  t )  in (R x [O, 01) such that 

8T 
- + u*VT + PTV-u = xV2T + S(x , t )  in R, (28a) 
at 

where V - u  = 0 in R, 

T =  To on an,, (28b) 

and 

here u(x, t ) ,  ti, S,  To,  h, T 2 ,  q2 and g are given and r = dR, @ dR2 is the boundary of R. The 
parameter, /l, although irrelevant if V - u  = 0, will be seen to be important in the approximate 
solution, since in the discretized approximation, wherein u is typically approximated via piecewise 
polynomials similar to those used for T, V - u  can, at best, vanish only in a weak sense (not 
pointwise)-general1 y. 

Introducing the same finite element function spaces and basis functions as in the previous 
problem, the appropriate weak form of (28) is 
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where is given by (20). Inserting (20) into (29) and transposing the terms in (T;} to the 
right-hand side, leads to the conventional GFEM equations for { T j } ,  this time in the form 
of a coupled linear set of first-order ordinary differential equations (ODEs) in time. Integration 
of these ODEs yields the approximate solution for the primary variable-‘part 1’ (conventional 
GFEM) of the solution procedure. 

Once 7 is available, the consistent heat flux on dR, can be computed, as before, by considering 
the following weak form of (28): 

= {* ris + 12., ri(h~2 - 4 2 )  - il,, riql; i = 1 , ~ .  . . , M ,  (30) 

which, when (22) is employed, is a system of Galerkin equations for the (time-dependent) nodal 
heat fluxes {qIi}; this is ‘Part 2’. It is noteworthy that ijl depends on much more data that 
simply the normal derivative of on r, which is (effectively) a portion of the term 
Jn t i V r i * V F ;  we will elucidate this point later. 

To obtain the correct global heat balance implied by (28) we begin, as before, by summing 
the N + M equations of (29) and (30) to obtain, using (12), ;I* T + {*(..VT + p T V . u )  = j*s - Id,, ij1 - s,, c 4 2  + - T2)1? (31) 

which is almost, but not quite, the correct global balance. The ‘culprit’ is the advection term 
which, using the divergence theorem, can be rewritten as 

j * u . v i .  = Jr T n - u  - ~ v - u  

to yield 

Except for the last term, each member of the right-hand side is an appropriate contribution to 
the global energy balance: the first term is the total heat generation rate, the second term is the 
net flow of heat leaving by conduction through aR,, the third term is the net flow of heat 
leaving by conduction and convection (i.e. Newton’s law of cooling) through dR, and the fourth 
term is the net loss of heat by advection through r (this term is zero for a contained flow since 
then n*u[,  = 0; in the more general flow-through domain, it is (appropriately) non-zero, 
even though Jr u - n  is always zero for incompressible flows). 

In most discretized approximations, the term [ ,TV-u will not be zero, as would be the 
case in the continuum, although presumably it is usually small. If = 0 we are dealing with 
the so called advective form of the equation16 and the last term in (32) represents a spurious 
source (or sink, since SO 7 V . u  is indefinite) which precludes the proper global energy balance. 
On the other hand, the energy balance can be recovered merely by setting fi = 1; this is called 
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the flux divergence form since u * V T +  T V - u = V - ( u ? )  and u T  is the advective 
flux of internal energy. Thus, only if /j is set to 1 in (29) and (30) will the resulting values of 
{gl i}  be consistent in the sense of satisfying the appropriate global energy balance. Another 
requirement for  consistency then is  that thef lux divergence form be used f o r  the advection terms 
(unless V * u  ~ 0 ,  in which case /3 is irrelevant). Finally we remark that (i) steady-state 
advection-diffusion is of course just a special case of the above and is obtained simply by 
omitting all time derivatives, (ii) if T in (28a) represents a species mass fraction rather than 
temperature, only the consistent flux method can guarantee species mass conservation. 

Remark. An alternative formulation (for /3 = l), suggested by a referee, is one that includes 
the advective flux in the boundary condition (28c), i.e. tin-VT is replaced by n.(tiVT-uT). 
Then, via integration by parts of (also) the advection term in (28a), an appropriate weak form 
that incorporates the new boundary condition is obtained. The resulting global heat balance 
(32) has q1 replaced by (ql + n-uT)  and the global advection term (the integral over r) is 
omitted; the third term then represents the heat loss through dn, via advection, diffusion and 
‘convection’. 

Navier-Stokes (Boussinesq) equations 

Having detailed the consistent GFEM procedures for advection-diffusion, it is now a relatively 
simple matter to extend these results to the incompressible Navier-Stokes equations, written in 
two-dimensional Cartesian co-ordinates for simplicity: find u(x, t )  = (u, u), P(x, t )  and T(x, t )  such 
that 

p - + u * v u  + p u v - u  = v-2, [ (; I in R, 

where 

P is the pressure, p is the viscosity, p is the density, y is the coefficient of volumetric expansion, 
T is the temperature deviation from a reference value and g is gravity. Equations (33), along 
with (28) for thermally coupled flows and the following initial and boundary conditions on 
velocity, are sufficient to yield the primary variables, u, P and T: 

u(x, 0) = uo(x) where V-u,  = 0, (344 

u = u l  on an;, (34b) 

n - t ,  = n,( 2pz- al.4 P )  + n Y p ( &  du +;.) av = f,, on an; 
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and 

where the x -  and y-components of the traction force (exerted by the boundary on the fluid), f , ,  
and f,,,, are given, as are u l ,  u1 and uo. Also, the boundary of 0 is r = 80; 0 dR; = 
?Rt; 0 ?OL; = &2:@ 22; (the last term is related to (28b, c)). If desired, the (natural) traction 
boundary conditions, given by (34c, e) could be generalized u la (28c) to boundary conditions 
of the third kind, sometimes called Robin conditions (which could, for example, permit slip along 
a 'solid' wall) in the form (for 34c) 

n-r, = f ; ,  + a(u - u,) on an;, (35) 

where a and u2 as well as , fs2,  are given." 
Proceeding as before, we first write the weak form appropriate to the primary variables, which is 

j a+iv . i=o;  i =  1,2, ..., N ,  (36c) 

and (29) in which u is replaced by 1, N is replaced by N ,  and 4i by 4T (which vanishes on 
80:); here 

where I@} vanish on an;, 

where { @ }  vanish on an';, 
N P  

j =  1 
P =  C P j l j j  (37c) 

and (20) in which {4 i , r j }  are replaced by {$T,rT}, N is replaced by N , ,  M by M ,  
and an, by 82;. Here us is the interpolant of u1 on an'f and similarly for us on 22: and 
T5 on an:', {lji} are the basis functions for pressure (from the finite-dimensional (N,) 
subspace of L, ,  which permits discontinuous, C -  ', approximation) and 

There is a total of N + M nodes for velocity and temperature and N ,  nodes for pressure. Also, 
N u  comprises the 'u-nodes' in R and on an; and similarly for N ,  and N,, M ,  comprises the 
u-nodes on 82; and similarly for M,. and N , ;  finally, 
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N ,  + M ,  = N ,  + M ,  = N ,  + M ,  = N + M .  (38) 

Inserting (37) into (36) and (20) into (29) leads to the conventional GFEM equations for 
{ u j } ,  {vj}, { P j }  and { T j } ;  considerable effort is of course required to obtain 
these primary variables since the GFEM equations are coupled, non-linear, first-order differential 
equations in time (for effective solution procedures, see Reference 18). 

Nevertheless, in principle, the ‘first part’ of the problem is now solved (for ii, P and 7) 
and we move on to ‘Part 2’, the appropriate weak form of which is 

i =  1,2 ,..., M , ,  (39b) 
and (30) in which u is replaced by ii, Ti is replaced by rr and M by M , .  The only unknowns 
in these equations are ,Txl, ,TY1 and ijl; thus, using the appropriate expansions 

and (22) with T j  replaced by rT, dR, by dRy and M by M , ,  (39) and (30) can be used to 
obtain consistent (nodal) forces in the x- and y-directions and the consistent (nodal) heat flux 
on the respective Dirichlet portions of the boundary. 

Although considerable effort would be required, it could be shown that (39) converges, as 
k -, 0, to the appropriate continuum boundary forces (or surface tractions); namely the dR, 
analogues of (34c) and (34e). For finite k, however, the above equations provide a more accurate 
‘local force balance’. Finally, as is often the case, if normal and tangential components of the 
boundary force are desired, then generally one must employ the techniques discussed by 
Engelman et a1.,19 in which the momentum equations are rotated through the appropriate angle 
to achieve consistent results, i.e. in contrast to the situation for thermal problems, which are 
scalar, it is necessary and important, for general polygonal boundaries, to carefully define a 
consistent normal direction for incompressible flow problems. This situation is particularly 
relevant and evident for the 4/1 element (bilinear velocity, piecewise constant pressure) when a 
domain corner is ‘defined’ by a single element-a common occurrence (for any element). Since 
the pressure is constant over the element, it is clear that this element is incapable of representing 
pressure gradients within a single element. Whereas both f, and f Y  from (39) and (40) will 
contain P in the corner element, it is clear that the resolution of the boundary force vector at 
the corner node into normal and tangential components must be done ‘properly’; the definition 
of proper requires that P shows up (as usual) in the normal force, but not in the tangential force. 
Not surprisingly, this unique normal direction is identical to that obtained in the ‘consistent 
normal’ described in Reference 19. 

It is also noteworthy that consistent boundary forces can only be obtained using the (given) 
stress-divergence form of the Navier-Stokes equations. If, for example, V-T, in (33a) were 
replaced [using (33c)l by its continuum equivalent, pV2u - dP/dx, the associated natural 
boundary conditions no longer represent physical forces and it is then not possible to compute 
consistent boundary forces. (The computed results would be only portions of the total forces). 
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This of course is not to say that the alternative form of the Navier-Stokes equations is actually 
wrong or ‘illegal’; in fact it is often a useful formulation method, especially for outflow 

It does indicate, however, that the stress-divergence form is more physically 
“consistent”. 

It is to be emphasized that the forces obtained from (39) and (40) are in fact the components 
of the total force vector acting in the x- and y-co-ordinate directions. If the normal and tangential 
components of this force are desired, they can be obtained from f, and f, using the appropriate 
transformation (rotation) after the consistent normal and tangential directions are obtained in 
the manner described by Engelman et al.19 Note that the normal vector is not required if only 
the Cartesian components of the force are desired. 

Finally, to demonstrate the global balances implied by (33) and implicitly contained in the 
consistently obtained results, we first add all of the equations of (36a) to those of (39a) and 
similarly for (36b) and (39b) to obtain, using the appropriately generalized version of (12), 

and 

which can also be written as 

If V*ii  = 0 or p = 1 (only the latter of which is generally feasible in the discretized version), 
these are the appropriate global force balances in the x- and y-directions.” The first term 
(,Tx,,rv) on the right-hand side is the total force exerted by the boundary on the fluid, the 
second (in the first integral) is the next flux of momentum leaving R through r and the third 
term in (42b) is the total upward buoyancy force (which is always largely balanced by a hydrostatic 
portion of the pressure-a part of jnY,). The last term is of course spurious and p must 
(usually) be set to 1 if true consistency is desired. 

As with advection-diffusion, the consistent steady-state equations are obtained from the above 
simply by omitting all time derivatives. 

EXAMPLES 

Further clarification of the consistent flux method may be best presented using sample problems. 

One-dimensional steady heat conduction 

As an extremely simple but illustrative introductory example, consider the one-dimensional 
version of ( I )  and/or ( 1  8): 

d2 T 
~ + S(x) = 0; 0 d x d 3, dx2 (434 

T=O at x=O (43b) 
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and either 

or 
- 

T=O at x = 3  

d T  
- = 5  at x = 3 ,  
d x 

where S(x) = 0 for 0 < x < 2 and S(x) = 6 for 2 < x < 3. The exact solution to (43) is 

T=x, O<x<2,  (444 
T =  ~ ( 1 3  - 3x) - 12, 2 < x < 3, (44b) 

which is shown as the lower solid curve in Figure 1 .  
We will now obtain the approximate.so1ution using just three linear elements, each of unit 

length. Consider first the Dirichlet boundary condition (43c), for which the two nodal equations 
(for T ,  and T2 ,  the interior nodes; see Figure 1) are, from (7), 

1 
-(2T, - T,) = 0 
1 

and 
(454 

1 
1 
-( - TI + 2T2) = S / / 2 .  (45b) 

Hence TI = 1, T2 = 2; the solution is exact at the nodes (the dashed line in the lower curve of 
Figure 1). 

Suppose now that the heat flux, q = - dT/dx, at x = 3 is desired. If the conventional method 
is imployed, a /a (1 4), we obtain 

(464 4 = - (T3 - TI)/[ = 2, 

" 
0 0.5 1.0 1.5 2.0 2.5 3.0 

X 

To Tl T2 T3 

Figure 1 .  Steady heat conduction in one dimension 
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whereas the consistent flux, from (10) or (16), is 

= S1/2 - (T3 - T2)/1= 5,  (46b) 
which agrees with the exact solution. It is clear that although (46a) is in fact the true slope of 
the FEM solution, (46b) properly accounts for both the heat generated in the finite (i.e. not 
infinitesimal) element and heat conduction at x = 3. 

To further demonstrate consistency, let us re-solve the problem using the Neumann boundary 
condition, (43d), except that we use the derived value for q-from (46). The appropriate nodal 
equations for this case, from (19) and (20), are 

1 
-(2T, - T2) = 0, I 

1 
I -( T3 - T2) = S1/2 - 4. (474 

(Note the ‘similarity’ between (46b) and (47c)). The solution to (47) for q = 2(46a) is T ,  = 4, 
T2 = 8, T3 = 9 and is shown as the (dashed) upper curve in Figure 1 (the solid line is the exact 
solution for q = 2). On the other hand, q = 5 from (46b) gives the original result, T ,  = 1, 
T, = 2, T3 = 0, which is also the solution using (43d)-i.e. the exact solution. Hence, only the 
consistently derived flux can be used as a natural boundary condition to recover the original 
solution (obtained with Dirichlet boundary conditions). Finally, it is simple to demonstrate that 
only (46b) gives a heat flux which yields a global heat balance; see (1 1). 

One-dimensional time-dependent heat conduction 

For this example, we consider the one-dimensional version of (28) with u and S = 0, in order 
to demonstrate the effect of time-dependent boundary conditions on the computation of the 
derived variable; namely 

dT d2T 
- = t i - ;  O G X G L ,  
at ax2 

T = T,(.x) at t = 0, (48b) 

and 
T = To constant at x = 0 

T =  T,( t )  at x = L. 

Here we assume that the approximate solution, T(x, t ) ,  has been computed (via (29), etc.), and 
we desire the heat flux at x = L. Denoting by 1 the length of the last (linear) element, the 
conventional flux is simply 

(494 
where TN(r) is the computed nodal temperature at  the first node in from x = L. The consistent 
flux result, via (30), is 

4 = - t i ( T L ( t )  - T N ( t ) ) / l  
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which, again via a proper energy balance, accounts for more than just the slope of T(x). For 
example, suppose that TL(t) is given by 

TL(t) = Ts(l - e-"'), 

4 = - IC[(TL - TN)/~] - (1/6)[(2Ts/t)e-'/' + TN(~)], 

(50) 

(51) 

where t is a given time-constant. In this case, (49b) gives 

where TN and fN(t) are available from the solution to 'part 1'. Clearly the consistent incorporation 
of a specified time-dependent boundary temperature would be significant for t = O(t,) where 
tE = 12/ti << t is the element time constant. (Also, u la Gresho and Lee,I5 one should not even 
seek a heat flux result for t << t,.) 

Finally we note that if the lumped mass approximation were employed (for dT/dt) to compute 
the nodal temperatures, then the associated consistent flux equation is 

4 = - IC [ (TL - TN)/~] - IT$! (494 

rather than (49b), i.e. the mass must also be lumped when computing q. Equation (49c) is also 
the 'consistent' flux which would be obtained using the finite difference method and introducing 
an 'image point' outside of x = L (at a distance l ) ,  thus suggesting that these techniques can also 
be adopted for finite difference approximations. 

Steady two-dimensional heat conduction 

is specified properly, it is easy to demonstrate that an exact solution is 
We now consider the problem given by (1) where S = - 10 and R is the unit square. If To(T) 

(52) 
which is also the FEM solution at the nodes, using, for example, the 4-node bilinear element 
and a mesh of rectangles. The corresponding heat flux is 

T(x, Y) = (2x + Y)', 

q =  - V T =  -2(2x+y)(2i+j),  (53) 
where i, j are the unit vectors in the x- and y-directions, respectively. The boundary flux is 
q=n-qlr  and is shown in Figure 2 as the heavy solid lines. By comparison, two 
approximate heat flux results are also shown which were obtained on the graded mesh of 64 
elements shown in the Figure. The dots represent the flux obtained using (27), i.e. the consistent 
heat flux in the lumped mass approximation. The triangles represent the flux as computed 
from (14) evaluated at the centre of the boundary of each element (boundary Gauss point). 

Clearly the consistent flux (even using lumped mass) is significantly more accurate. Also, 
whereas the consistent flux identically satisfies (1 l), the results using (14) give Srq = - 8.75, which 
is a 12.5 per cent error in the global heat balance. It is also noteworthy that the consistent 
method yields a (continuous) value of q at each of the four corners, where the actual normal is 
undefined and the exact solution displays a jump in the normal flux. This apparent deficiency 
is of course related to the Co (smoothing) approximation employed for the boundary flux. Finally, 
only if the consistent flux results were used as prescribed fluxes for the equivalent Neumann 
problem, would the exact solution at  the nodes be again obtained. 

Two-dimensional time-dependent advection-diffusion 

Applying the consistent flux equation (30) to the boundary two-patch of four-node elements 
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Figure 2. Boundary heat flux for steady two-dimensional heat conduction 

c - 

Ic 
+ --C(Tw - Tsw) + 4(T0 - Ts) + (Te - Tse)l, (54) 6h 

where we have divided the original equation (30) by Jan, To = 1 in order to display the individual 
terms as finite differences. The above equation has the following Taylor series interpretation: 
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( 5 5 )  
a2 T 

+O(h)[l  + 0 ( 1 2 ) ] ,  

wherein the respective term-by-term identifications are obvious. By contrast, the corresponding 
result obtained via differentiation of the element-level basis functions and averaging the results is 

Thus, formally, the consistent flux is no more accurate than the conventional flux approximations. 
In practice, however, for finite k and 1 ,  it appears that (54)  will yield more accurate results than 
(56) (which does not even recognize the effect of a change in 1)  by virtue of a reasonable (i.e. 
consistent) accounting of all the physical processes occurring in the neigkbourkood of the point 
in question. 

For comparison, the 'semi-consistent' flux equation, using the advection form (B  = 0) yields, 
for the advection terms, 

+ h [ ( ' S w  + v s ) ( T w  - T s w )  + ( v s w  + 6vs + v s e ) ( T o  - ~ s )  + ( v s  + v s e ) ( T e  - ~ s e 1 1 7  

which replaces the second and third terms in (54) and has the Taylor series interpretation, 

k aT 2[ uax+ o:] + O ( k ) [ I  + 0 ( 1 2 ) ] .  

We re-emphasize, however, that this form cannot generate a global energy balance. 

Heat flux discontinuity 

The following related example is presented to (i) show how a heat flux discontinuity is treated 
consistently and (ii) to further clarify the behaviour of the basis functions {4i} and {ri} on 
the boundary. We consider the advection-diffusion problem described by ( 2 8 )  with k = S = 0 
for simplicity and examine the appropriate two-patch (four-node element again) in the region 
near the intersection of dQ,  and dQ2,  as shown in Figure 4. Here T is specified on node 0, w, . . . 

q-specif ied 

(52) 

Figure 4. Discontinuity in heat flux caused by a change in boundary conditions 
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(i.e. on an,) and the normal heat flux q2 is specified at and to the right of node 0 (on aR,). The 
dashed lines indicate the appropriate basis functions on r, i.e. {C#Ii} is zero on dR,, (ri} is 
zero over most of dQ, (and Q) except that To is non-zero in the neighbourhood of node 0 (the 
two corresponding elements), and CjC#Ij + C j r j  = 1 on 

In order to compute the jump in heat flux at node 0 caused by the discontinuity in the 
boundary condition there, the consistent nodal equation is formed, as before, which yields (upon 
division by fn To = i(1, + 1,)) 

(and in 0). 

2 r,+r,[ Jan, + J a n 2 r 4  = RHS9 (57) 

where ‘RHS’ is the appropriate set of contributions from (30) and will resemble (54). For 
convenience and ease of exposition, we will first interpolate the given flux ( q 2 )  into the basis set 
{rj} to give, using (22), 

where qb2’ is the given (specified) flux at node 0 and qb’) is the corresponding flux which is to 
be computed; qb” + qb2) is the total flux at node 0 and qb’) - qb2’ is the jump in flux. For 
further simplicity we now lump the boundary mass matrices Li la (26) and (27), to give 

I ,  qb” + 12qb2’ 

1, + 1, 
= RHS, (59) 

which can be used to compute both qbl’ and the flux discontinuity 

(60) qbl’- 40 (2’ - - (1 + 12/1,)(RHS - qb2’). 

Of course the conventional method may also be used to estimate the jump in flux, and the 
final equation looks much the same as (60), the main difference being the manner in which RHS 
is evaluated (e.g. from (54) c.is-u-vis (56)). 

Viscous flow 

This final example illustrates the computation of boundary forces exerted by a viscous fluid in 
two-dimensional Stokes flow about a cylinder situated close to a moving wall. The velocity field 
from an exact solution for a semi-infinite is used to generate the velocities prescribed 
on the boundary of the computational domain. (See Reference 25 for correction of an error in 
Reference 23). The latter allows a comparison between the exact and numerical solutions, both 
the primitive variables and the boundary stresses-obtained via the consistent method at  
boundary nodes or at the boundary Gauss points via derivation from primitive variables. A 
sequence of four mesh refinement experiments (363,833,1083,1365 nodes) was conducted in order 
to assess the rate of convergence on isoparametric meshes of elements which differ mainly in size; 
both bilinear velocity, piecewise constant pressure (hereafter referred to as 4/1) and biquadratic 
velocity and C-’  locally linear pressure elements were investigated.26 The 1083 node mesh of 
bilinear elements is displayed in Figure 5. 

The velocity field and streamlines shown in Figures 6 and 7 were computed using the 4/1 
element. Almost identical results were obtained with the 9/3 element, i.e. they were graphically 
indistinguishable. (Both mixed and penalty formulations agreed to order of the penalty parameter, 
as theory predicts.) Defining the average element size as the square root of the total area of the 



Figure 5 .  Mesh of 4/1 elements 

Figure 7. Streamlines. Increment between streamlines A-F is 0.05 and between F-N is 0.1 
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domain divided by the number of elements, h = ( A / N , ) ” 2 ,  we find that the discrete r.m.s. norm 
of the error of each velocity component, i.e. IIu - u, 11 = (l/N),/[Ci(ui - ~ f ) ~ ]  where N is the 
total number of nodes and uf is the exact solution at node i, converges like O ( ~ I ’ ’ ~ )  for bilinear 
and O(h3’3)  for biquadratic elements whereas the corresponding norms for the pressure are 
O ( ~ I ” ~ )  and O(h2). (See Reference 25 for details.) The corresponding tractions, f, and f,, exerted 
by the cylinder on the fluid are displayed in Figures 8-1 1 in which the exact, consistent, and 
Gauss point values are plotted. 

Note added in proof: (A plotting error causes the exact solution to appear discontinuous near 
8 = 0 and II, rather than at 8 = 0 and II.) 

The results of the mesh refinement experiments establish that the consistent method with mass 
lumping (row sum) is super-convergent, O(h4), for the bilinear element and optimally convergent, 
O(hz), for the biquadratic element for both f, and f, when the two end point nodes of the 
interval along the cylinder are excluded from the calculations of the norm. The inclusion of such 
end points, where both f, and f, suffer discontinuities, leads to a significant convergence rate 
degradation, O(h1.5) and O(h) for f, and O(h) and O(h) for f,, respectively. The latter is the 
ramification of the Gibbs jump phenomenon which occurs in the approximation of a discontinuity 
and causes the oscillations which are clearly evident in Figures 8 and 9, especially in the consistent 

0 

-5.0 
X 
L L  

-10.0 

PI/4 PI/2 3+PI/4 PI 

THETA 

Figure 8. x-component of the force on a cylinder for a 4/1 element as a function of angle 8. 0 = 0  at the bottom of 
the cylinder: exact solution ~ ; consistent method with lumped mass -----; consistent method with consistent 

mass-----; Gauss point method 0 0 0 0 0 0 
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Figure 9. y-component of the force on a cylinder for 4/1 element as a function of angle 8. Curve designations are the 
same as in Figure 8 
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Figure 10. x-component of the force on a cylinder for a 9/3 element as a function of angle 8. Curve designations are 
the same as in Figure 8 
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Figure 11.  y-component of the force on a cylinder for a 9/3 element as a function of angle 0. Curve designations are 
the same as in Figure 8 

mass formulation. The corresponding convergence rates for the conventional Gauss point 
evaluation of f, and f, are O(h0‘85) for bilinear elements and O(h”5) for biquadratic elements 
and it is evident from Figures 8-1 1 that this method is inferior to the consistent method except 
possibly near end-points. In addition to the overall accuracy, other noteworthy features in Figures 
8-11 which also carry over to the other cases studied are the smoothness of the numerical results 
except near end-points and the faithfulness in reproducing the general trend of the exact solution. 
Also noteworthy are the oscillations which appear to be excited near 8 = 0.75~; their cause 
appears to be the poor elements adjoining the straight line directed from the upper left-hand 
corner of the domain to the boundary of the cylinder which is apparent in Figure 5. The change 
in shape in adjoining elements is less than subtle, a feature which degrades the finite element 
interpolants in this region and generates a noticeable local error in the derived forces on the 
cylinder. Of course, mesh refinement or a priori mesh smoothing via, for example, an equipotential 
method, diminishes this effect.25 

CONCLUDING REMARKS 

A consistent finite element method for computing certain derived boundary quantities has been 
considered. The method has been demonstrated to lead to more accurate results on both regular 
and isoparametric meshes than the conventional Gauss point evaluation of such quantities in both 
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thermal and flow problems. The application of such methods has also been recently shown by 
Lynch8 to be very advantageous in modelling the moving interface in phase change problems. 

Since the direction and often the magnitude of such derived quantities are discontinuous at 
surface points with discontinuous normals, such as corners, the method tends to exhibit a Gibbs 
jump phenomenon and often local oscillations; consequently, the local accuracy of the technique is 
usually degraded in such situation. However, away from these points optimal or in some cases 
superconvergent results are obtained. 
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